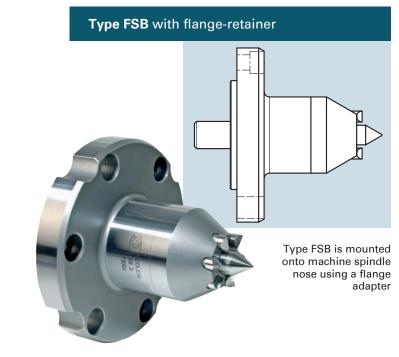
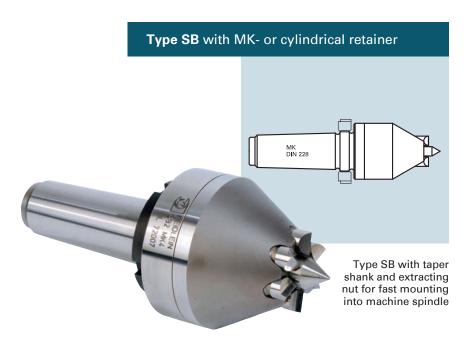
Face Driver

Standard-Face Driver for soft/green and hard tooling

- FSB
- SB
- FFB
- FFBH
- Pipe Driver

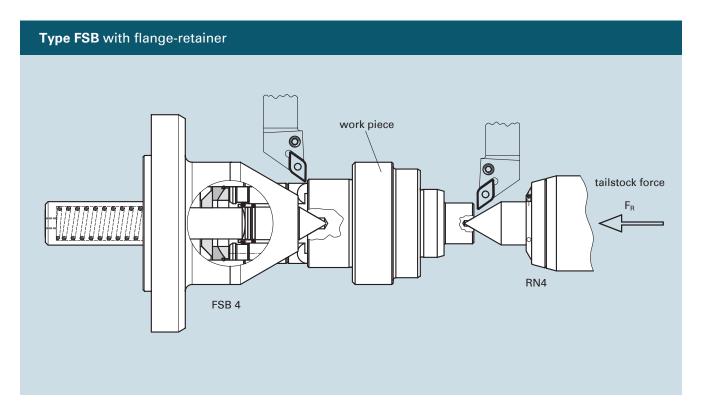



Face Driver FSB/SB

Clamping tools for tooling between centers

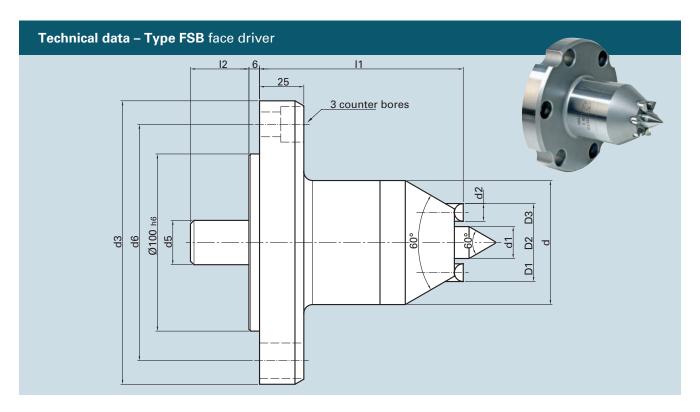
The entire surface of the work piece can be tooled and finished by clamping with a maximum of torque transmission. NEIDLEIN Face Drivers are mechanical clamping systems which are suited for soft/green as well as hard tooling.

Face drivers of type FSB/SB are power-operated by the thrust of the tailstock. Work pieces are clamped centrically using a movable center pin. This way different centerings can be adjusted, thus ensuring a constant datum-point at the end face of work piece.



NEIDLEIN Face Drivers Type FSB/SB with movable center pins ensure:

- a maximum of torque transmission, thus achieving high metal removing rates
- datum-point at the end face of work piece. Stable datum-point in case of different centerings
- extended tool-life of driving devices and cutting tools due to vibration-free running
- true run-out accuracy up to 0,02 mm maximum
- clamping force is triggered by tailstock
- fixed center pin/fixed datum-point in clamped state
- compensating driving devices/ ideal clamping of work piece
- simple handling

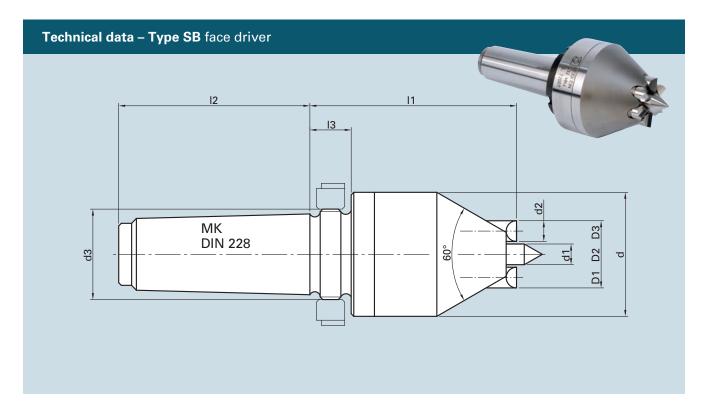


Clamping principle

The center pin located on the side of the tailstock pushes the work piece against the movable center pin of the face driver. The center pin will draw back until the surface of the work piece bears against the drive pins. In this state the clamping bolt is clamped over the power flow in order to ensure a fixed datum-point during the entire tooling process.

The drive pins are "floatingly", thus compensating for variations in work piece, squareness and surface finish. The entire surface of the workpiece can now be finished in one single clamping. Please check page 6 and 7 for metal removing rates to be obtained as well as for the tailstock forces required.
Compatible standard drive pins and center pins are listed in our brochure 1.2. We will be glad to design clamping devices suitable for your work pieces.

catalogue	Туре	d	d1	center	d2	d3	d5	d6	l1	12	drive	fastenin	g screw	clamp	oing dia	ameter
no.				Ø							pin	type	рс	D1	D2	D3
73012	FSB 01	48	5	0 – 5	6	160	25	133.4	115	28	3	M12	3	8	11	17
73001	FSB 0	48	3	0 – 3	8	160	25	133.4	115	28	3	M12	3	6	11	19
73011	FSB 11	42	6	0 – 6	6	160	25	133.4	115	28	3	M12	3	11	14	20
73002	FSB 1	48	8	0 – 8	8	160	25	133.4	115	28	3	M12	3	13	18	26
73003	FSB 2	70	14	2 – 14	10	160	25	133.4	115	23	6	M12	3	26	31	36
73004	FSB 3	70	18	2 – 18	10	160	25	133.4	115	33	6	M12	3	34	39	44
73009	FSB 35	80	14	2 – 14	15	160	25	133.4	115	33	6	M12	3	29	39	49
73005	FSB 4	90	24	3 – 24	15	160	32	133.4	115	72	6	M12	3	39	49	59
73010	FSB 45	100	28	3 – 28	15	160	32	133.4	115	72	6	M12	3	49	59	69
73006	FSB 5	132	35	3 – 35	20	160	40	133.4	115	74	6	M12	3	69	84	99
73008	FSB 55	182	35	3 – 35	20	220	45	171.4	115	165	6	M16	3	110	125	140
73007	FSB 6	212	35	3 – 35	20	250	45	210	115	165	6	M20	3	140	155	170
73013	FSB 7	255	50	25 – 48	20	290	50	250	132	165	6	M20	6	180	195	210
73014	FSB 75	302	50	25 – 48	20	348	50	310	132	165	6	M20	6	230	245	260
73016	FSB 8	360	80	30 – 76	30	440	78	394	190	262	6	M20	6	270	290	310
73015	FSB 85	410	80	30 – 76	30	490	78	444	190	262	6	M20	6	320	340	360


- All face drivers are supplied without drive pins.
- Types FSB 01/0 are supplied with center body, all other types without center pin.

It is the purpose of a flange-adapter to provide stable junction to the spindle machine. We supply these flange adapters for various sizes of spindle noses either in standard size (DIN 55028) or for spindle noses specific to manufacturer of machine-tools. Thus face drivers of range FSB can be used on different machines. Driving devices and center pins can be exchanged front view on the machine without any effort.

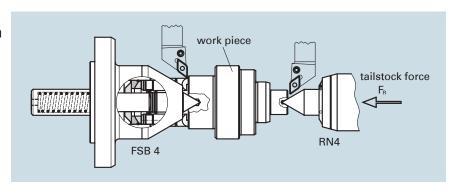
Upon request and depending on the tooling direction of the machine the face driver can be equipped optionally with drive pins for counter-clockwise tooling (SR/tooling direction M3), for clockwise tooling (SL/tooling direction M4) or for both tooling directions (NV=bi-directional).

Apart from the clamping diameters listed in the table under D1, D2, D3 we can also supply intermediate dimensions upon request. We can as well make extra-large center pins or mushroom centers appropriate to oversized centerings in work pieces

catalogue	Type	MK	d	d1	center	d2	d3	11	12	13	drive	clampin	g diamet	er
no.					Ø						pin	D1	D2	D3
72016	SB 01	3	48	5	0 – 5	6	M28 x 1.5	87	61	14	3	8	11	17
72017	SB 01	4	48	5	0 – 5	6	M35 x 1.5	87	74	16	3	8	11	17
72018	SB 01	5	48	5	0 – 5	6	M48 x 1.5	87	97	19	3	8	11	17
72001	SB 0	3	48	3	0 – 3	8	M28 x 1.5	87	61	14	3	6	11	19
72002	SB 0	4	48	3	0 – 3	8	M35 x 1.5	87	74	16	3	6	11	19
72003	SB 0	5	48	3	0 – 3	8	M48 x 1.5	87	97	19	3	6	11	19
72019	SB 11	3	42	6	0 – 6	6	M28 x 1.5	80	61	14	3	11	14	20
72020	SB 11	4	42	6	0 – 6	6	M35 x 1.5	80	74	16	3	11	14	20
72021	SB 11	5	42	6	0 – 6	6	M48 x 1.5	80	97	19	3	11	14	20
72004	SB 1	3	48	8	0 – 8	8	M28 x 1.5	80	61	14	3	13	18	26
72005	SB 1	4	48	8	0 – 8	8	M35 x 1.5	80	74	16	3	13	18	26
72006	SB 1	5	48	8	0 – 8	8	M48 x 1.5	80	97	19	3	13	18	26
72007	SB 2	4	70	14	2 – 14	10	M35 x 1.5	80	74	16	6	26	31	36
72008	SB 2	5	70	14	2 – 14	10	M48 x 1.5	80	97	19	6	26	31	36
72009	SB 3	4	70	18	2 – 18	10	M35 x 1.5	80	74	16	6	34	39	44
72010	SB 3	5	70	18	2 – 18	10	M48 x 1.5	80	97	19	6	34	39	44
72011	SB 4	5	90	24	3 – 24	15	M48 x 1.5	104	97	19	6	39	49	59
72012	SB 4	6	90	24	3 – 24	15	M70 x 1.5	104	134	20	6	39	49	59
72013	SB 5	6	132	35	3 – 35	20	M70 x 1.5	135	134	20	6	69	84	99
72015	SB 55	6	182	35	3 – 35	20	M70 x 1.5	135	134	20	6	110	125	140
72014	SB 6	6	212	35	3 – 35	20	M70 x 1.5	135	134	20	6	140	155	170

- face driver with cylindrical shank upon request.
- All face drivers are supplied without drive pins.
- Types SB 01/0 are supplied with center body, all other types without center pin.

Type series SB with MK retainer is embedded directly in the machine spindle and removed by means of an extracting nut. Driving devices and center pins can be exchanged front view on the machine without any effort.


If necessary and depending on the tooling direction of the machine the face driver can be equipped optionally with drive pins for counter-clockwise tooling (SR/tooling direction M3), for clockwise tooling (SL/tooling direction M4) or for both tooling directions (NV=bi-directional).

Apart from the clamping diameters listed in the table under D1, D2, D3 we also supply intermediate dimensions upon request. We also make extra-large center pins or mushroom centers appropriate to oversized centerings in work pieces.

FSB/SB-Face Drivers: calculations

Tailstock force/ maximum chip cross section of metal removing

Principle: the tailstock force pushes the work piece agianst the movable center pin of the face driver. The center pin will draw back until the surface of the work piece bears against the drive pins.

Tailstock force FR:

The force onto the face driver required for metal removing is calculated on the basis of the empirical formula:

$$F_R = [(q_{\text{max}} \times 1000 \times \frac{D}{d}) + 1000] \times m$$

FR [N] tailstock force

q_{max} [mm²] maximum of chip cross section for metal removing

D [mm] cutting diameter d [mm] clamping diameter

m [-] material factor (see adjustment-chart below)

maximum chip cross section qmax:

At a given tailstock force, maximum chip cross section is calculated as follows:

$$q_{\text{max}} = \frac{\frac{F_R}{m} - 1000}{1000 \times \frac{D}{d}}$$

Explanatory Notes::

The calculations refer to tooling against the face driver. In case of tooling against tailstock the calculated chip cross section is reduced by approx. 40%. The first chip, however, should

always be machined toward the face driver, in order to achieve an ideal penetration of the drive pins. Ratio D/d should not exceed 2, otherwise it would work inefficiently.

Material Factor m Adjustment Chart

Material Factor m	1,4	1,2	1,1	1,0	0,8
Rm [N/mm ²]	1000	800	700	600	400
examples	42CrMo4	16MnCr5	C 15E (Ck 15)	S355J0	S235J0
		25CrMo4	C 45E (Ck 45)	35S20	

Applied Chisel Load of Drive Pins

 The chisel load is calculated as follows:

Keep the chisel load within the following range/scale: 250 – 350 N per mm chisel length

$$BS = \frac{F_R}{n \times s}$$

BS [N/mm] chisel load
F_R [N] tailstock force
n [-] number of drive pins
s [mm] chisel length

 $BS = \frac{7200N}{6 \times 4mm} = 300 \frac{N}{mm}$

Exemplification:

turning with FSB 3 face driver, 6 drive pins, respective length of chisel 4mm, tailstock force 7200N

FSB/SB-calculation example

Specified data of machine and work piece:

maximum tailstock force: 10000 N material of work piece: C15E diameter of work piece on

front-side of face driver,

diameter of face driver: Ø 48 mm Turning diameter: Ø 90 mm

tailstock force FR:

In order to ensure sufficient pull-in power (see chisel load of drive pins) a tailstock force of approx. 7200 N has to be supplied.

maximum chip cross section qmax:

the maximum chip cross section (at the ultimate turning-Ø) is calculated as follows:

Explanatory Notes:

Selection of face driver:

Face driver type FSB 3 / clamping diameter 44mm 6 drive pins: chisel length 4mm each

$$BS = \frac{F_R}{n \times s} \implies F_R = 300 \frac{N}{mm} \times 6 \times 4mm = 7200 N$$

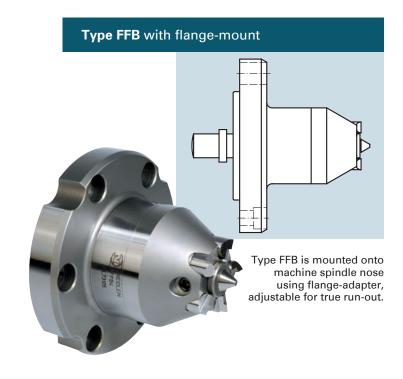
Determination of material factor m:

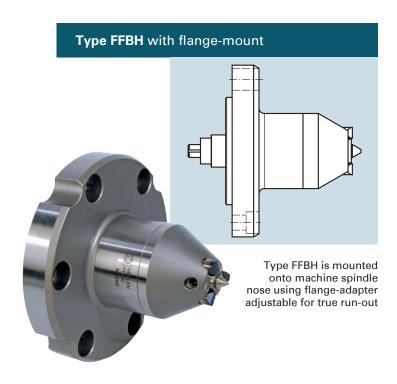
as per adjustment chart material factor: m (C15E) = 1,1

$$q \max = \frac{\frac{7200N}{1,1} - 1000}{1000 \times \frac{90mm}{44mm}} = 2,71mm^2$$

This calculation refers to tooling against the face driver. The calculated chip cross section refers to the ultimate turning diameter. In case of further

tooling toward pivot of work piece, Even larger chip cross sections can be achieved (> formula), commensurate with turning diameter


Face Driver FFB/FFBH


Clamping tools for tooling between center pins

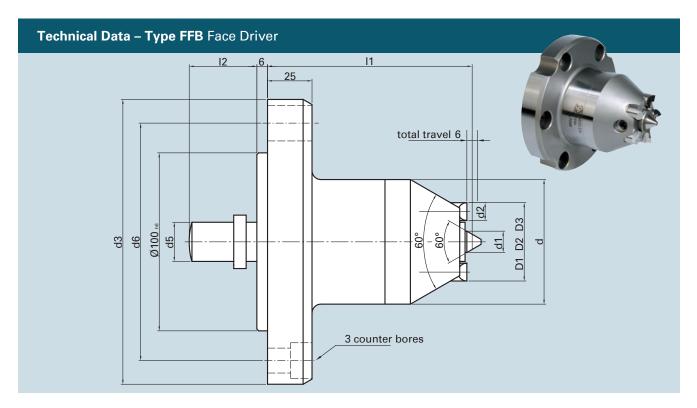
the entire surface of work piece can be completely machined with one single clamping and with a maximum of torque transmission. NEIDLEIN face drivers are mechanical clamping systems, suitable for soft/green tooling and hard turning likewise.

Face drivers of type FFB / FFBH are power-operated on the side of the machine spindle as well as the side of the tailstock. The work pieces are clamped centrically by the fixed center pin. This operation results in high true run-out accuracy.

Drive pins of type FFBH are hydraulically activated and compensated, thus achieving excellent true run-out accuracy.

NEIDLEIN Face Driver type FFB / FFBH with fixed center pin ensure:

- maximum of torque transmission, thus achieving a high rate of metal removing
- datum-point location in center of workpiece ensures constant measures of length
- true run-out accuracy up to 0,005 mm maximum.
- extended service life of drive pins and cutting tools due to vibration-free running
- fixed clamping location
- compensating driving devices/ ideal clamping of work piece
- easy handling


power operation by clamping cylinder Fs. FFB 2 RN3

Clamping principle

The center pin located on the side of the tailstock pushes the work piece against the fixed center pin of the face driver. The motion of the drive pins against the surface of the work piece is initiated by the clamping cylinder mounted into the machine. The drive pins are "floatingly" suspended, thus compensating irregularities with regard to possible unevenness of the surface of work pieces. The datum-point of work pieces on the machines is determined by the size of the center hole. The entire surface of work piece can now be tooled in one single clamping.

See page 12 and 13 with data for achievable removal of material and the thrust requested. The appropriate standard drive pins and center pins can be found in brochure 1.2.

We will be glad to design clamping devices suitable for your work pieces.

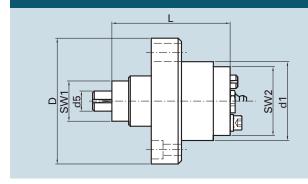
catalogue	Туре	d	d1	center	d2	d3	d5	d6	l1	12	drive	fastenir	ng screw	clamp	oing dia	meter
no.				Ø							pin	type	pcs	D1	D2	D3
73101	FFB 01	60	5	1 – 5	6	160	18	133.4	115	38	3	M12	3	8	11	17
73112	FFB 0	60	3	1 – 3	8	160	18	133.4	115	38	3	M12	3	6	11	19
73111	FFB 11	42	7,8	2 – 6,5	6	160	12	133.4	115	38	3	M12	3	11	14	20
73102	FFB 1	48	9,8	4 – 8,5	8	160	18	133.4	115	38	3	M12	3	13	18	26
73103	FFB 2	70	10	4 – 9	10	160	22	133.4	115	38	3	M12	3	26	31	36
73104	FFB 3	70	12	6 – 11	10	160	22	133.4	115	38	3	M12	3	34	39	44
73113	FFB 35	80	10	4 – 9	15	160	22	133.4	115	38	3	M12	3	29	39	49
73105	FFB 4	90	16	10 – 15	15	160	25	133.4	115	38	5	M12	3	39	49	59
73106	FFB 45	100	16	10 – 15	15	160	25	133.4	115	54	5	M12	3	49	59	69
73107	FFB 5	132	16	10 – 15	15	160	25	133.4	115	54	5	M12	3	69	84	99
73108	FFB 55	182	16	10 – 15	15	220	40	171.4	155	54	5	M16	3	110	125	140
73109	FFB 6	220	16	10 – 15	15	250	40	210	171	54	5	M20	3	140	155	170

- All face drivers are supplied without drive pins.
- Types FFB 01/0 are supplied with center body, all other types without center pin.

It is the purpose of an adjustable flange-adapter to provide stable junction to the spindel machine. We supply these flange adapters for various sizes of spindle noses in standard size (DIN 55028) or for spindle noses specific to machine-tool manufacturer. Thus face drivers of range FFB can be used all-purpose on different machines. Driving devices and center pins can be exchanged front view on the machine without any effort.

Upon request and depending on the tooling direction of the machine, the face driver can be equipped optionally with drive pins for counter-clockwise tooling (SR/tooling direction M3), for clockwise tooling (SL/tooling direction M4) or for both tooling directions (NV=bi-directional).

Apart from the clamping diameters enlisted in the table under D1, D2, D3 we can also supply intermediate dimensions upon request. We can as well make extra-large center pins or mushroom centers appropriate to oversized centerings in work pieces



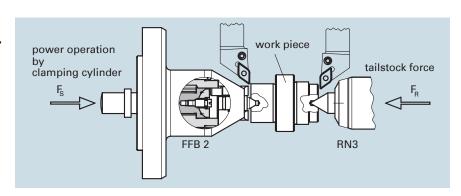
catalogue	Туре	d	d1	center	d2	d3	SW	d5	d6	11	12	drive	fastenin	g screw	clamp	ing dia	meter
no.				Ø								pin	type	pcs	D1	D2	D3
63102	FFBH 1	70	9,8	4 – 8,5	8	160	24	12	133.4	115	35	3	M12	3	13	18	26
63103	FFBH 2	70	10	4 – 9	10	160	24	12	133.4	115	35	3	M12	3	26	31	36
63104	FFBH 3	70	12	6 – 11	10	160	24	12	133.4	115	35	3	M12	3	34	39	44
63106	FFBH 4	90	16	10 – 15	15	160	34	12	133.4	132	35	5	M12	3	39	49	59
63107	FFBH 45	100	16	10 – 15	15	160	34	12	133.4	132	35	5	M12	3	49	59	69
63108	FFBH 5	132	16	10 – 15	20	160	34	12	133.4	149	35	5	M12	3	69	84	99

• All face drivers are supplied without drive pins and without center pins.

Technical Data - Type FFBH Hydraulic Unit

catalogue	Туре	SW	d5	L	d1	SW2	D
no.							
63102HE	FFBH 1	24	12	70.5	47	41	75
63102HE	FFBH 2	24	12	70.5	47	41	75
63102HE	FFBH 3	24	12	70.5	47	41	75
63106HE	FFBH 4	34	12	70.5	65	59	93
63106HE	FFBH 45	34	12	70.5	65	59	93
63108HE	FFBH 5	34	12	70.5	87	81	131

The general explanatory notes for this face driver type FFBH can be obtained from the sheet "Technical Data-Type FFB".


For safe and smooth operation of face driver we recommend exchange of hydraulic unit after 1.500 operating hours.

Furthermore, we offer the option for professional maintenance of the exchanged hydraulic units in our production plant.

FFB/FFBH-Face Drivers: Calculations

Force of clamping cylinder/ Maximum chip cross section.

Principle: the tailstock force pushes the work piece against the fixed center pin of the face driver. The drive pins are activated by the clamping cylinder mounted into the machine.

force of clamping cylinder Fs:

the force onto the face driver required for metal removing is calculated on the basis of the empirical formula:

$$F_S = [(q_{\text{max}} \times 1100 \times \frac{D}{d}) + 1300] \times m$$

 $\begin{array}{ll} Fs & [N] & force\ of\ clamping\ cylinder \\ q_{max} & [mm^2] & maximum\ of\ chip\ cross\ section \end{array}$

D [mm] cutting diameter d [mm] clamping diameter

m [-] material factor (see adjustment-chart below)

maximum chip cross section qmax:

At a given force of clamping cylinder, the maximum chip cross section is calculated as follows:

$q_{\text{max}} = \frac{\frac{F_s}{m} - 1300}{1100 \times \frac{D}{d}}$

tailstock force FR:

In case of tooling against the face driver the tailstock force has to be approx. 20 % more than the force of the clamping cylinder F_s.

Explanatory notes:

In case of tooling against the tailstock, the tailstock should be approx. 40–50% higher than the force of the clamping cylinder, if

The first chip, however, should always be machined toward the face driver, in order to achieve an not, then the chip cross section should be reduced by approx. 30%. (as there is an addition of force of clamping cylinder and cutting force).

ideal penetration of the drive pins. Ratio D/d should not exceed 2, otherwise it would work inefficiently.

Material Factor m adjustment-chart:

Material Factor m	1,4	1,2	1,1	1,0	0,8
Rm [N/mm ²]	1000	800	700	600	400
examples	42CrMo4	16MnCr5	C 15E (Ck 15)	S355J0	S235J0
		25CrMo4	C 45E (Ck 45)	35S20	

Chisel Load of Drive Pins

The chisel load is calculated as follows:

Keep the chisel load within the following range: 250 – 350 N per mm chisel length

$$BS = \frac{F_S}{n \times s}$$

BS [N/mm] chisel load

Fs [N] force of clamping cylinder
n [-] number of drive pins
s [mm] chisel length

exemplification:

turning with FFB 3 face driver, 3 drive pins respective length of chisel 7 mm, force of clamping cylinder 6300 N

$$chisel\ load = \frac{6300N}{3 \times 7mm} = 300 \frac{N}{mm}$$

FFB/FFBH-calculation EXAMPLE

Specific data of machine and work piece:

maximum force of clamping cylinder: 12000 N material of work piece: 16MnCr5

diameter of work piece,

side of face driver: \emptyset 62 mm tooling diameter: \emptyset 120 mm

Selection of face driver:

Face driver type FFB 4 / clamping diameter Ø59 mm 5 drive pins each 7,5 mm chisel length

• Force of clamping cylinder Fs:

In order to ensure sufficient entrainment (see chisel load of drive pins), a clamping cylinder force of approx. 11250 N is needed.

As per adjustment chart material factor: m (16MnCr5) = 1,2

 maximum chip cross section qmax:

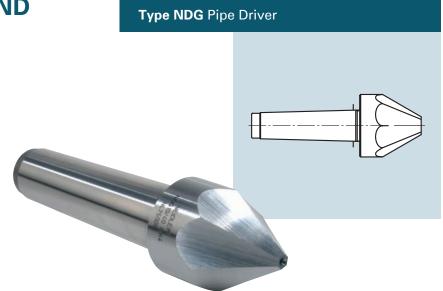
maximum chip cross section (at OD-Ø) is calculated as follows:

$$q \max = \frac{\frac{11250N}{1,2} - 1300}{1100 \times \frac{120mm}{59mm}} = 3,61mm^2$$

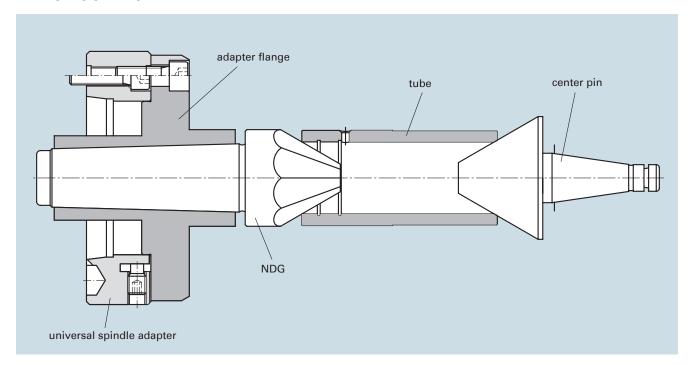
 $BS = \frac{F_S}{n \times s} \implies F_S = 300 \frac{N}{mm} \times 5 \times 7,5 mm = 11250 N$

Explanatory notes:

The calculated clamping diameter refers to the extreme outer tooling diameter. In case of further tooling toward pivot of


work piece, Even larger chip cross sections can be achieved (>formula), commensurate with turning diameter.

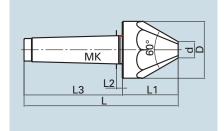
Pipe Driver NDG/AND


Clamping tools for tooling between center pins

The entire outside surface of a tubular work piece can be tooled with one single clamping and high torque transmission.

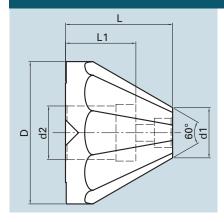
By means of a pipe driver, large clamping areas can be covered.

Clamping principle

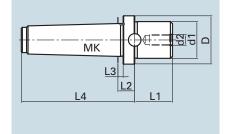


NEIDLEIN pipe driver NDG and AND ensure:

- high torque transmission, thus achieving a high rate of metal removing
- extended service life of driving chisels
- large clamping area of tubular work pieces 2 – 155 mm bore-diameter
- finishing of outer surface by clamping saving of time
- easy handling



Technical data – Type NDG pipe driver


catalogue	Туре	morse	D	d	L	L1	L2	L3	а	chisel	for Bo	ore-Ø
no.		taper								pcs	from	to
75001	NDG 0/15	2	18	0	100	32	4	68	60°	6	2	17
75002	NDG 0/30	3	31	0	135	50	5	85	60°	6	2	30
75003	NDG 10/40	3	45	8	145	60	5	85	60°	6	9	43
75004	NDG 20/60	3	63	18	147	62	5	85	60°	8	19	60
75005	NDG 10/40	4	45	8	168	60	6	108	60°	6	9	43
75006	NDG 20/60	4	63	18	170	62	6	108	60°	8	19	60

Technical data – Type NDG drive cone exchangeable

catalogue	Туре	D	d	d2	L	L1	а	chisel	for Bo	ore-Ø
no.								pcs	from	to
75101	NDG 35/90	93	32.8	35	70	46	60°	10	33	90
75102	NDG 90/155	158	88	35	75	46	60°	10	88	155

Technical data – Type AND arbor

catalogue	Туре	morse	D	d1	L1	L2	L3	L4
no.		taper						
75201	AND 35/4	4	46	35	M10	36	16	108
75202	AND 35/5	5	44.5	35	M10	36	16	130
75203	AND 35/6	6	64	35	M10	36	16	144

Data sheet for requesting an offer:

Name of company:	data of machine:	
Mr. / Ms:	size of spindle=	
phone.:	possibly size of taper in spindle=	
fax:	 maximum force of clamping cylinder F_S = 	
Email:	• tooling direction of spindle M3	
Data of work piece	tooling direction of spindle M4	
Data of work piece:	size of taper in tailstock	
X X	= ● maximum tailstock force F _R [N] =	
	• tailstock center sleeve live	
	tailstock center sleeve fixed	
	face driver / drive pins:	
	face driver types:	
material	 SB / FSB – movable center pin datum-point surface workpiece 	
■ work piece soft – carbide	 FFB – fixed center pin datum-point center size 	
=	■ tooling direction SR(M3)	
largest tooling-Ø D and length L	tooling direction SL(M4)	
• tooling-Ø d and chamfer x	bi-directionalNV	
=	● diamond tipped	
size of center-Ø d2 [mm] and shape	 FV diamond embedded 	
drawing of work piece enclosed	KV hard coated	
□yes □No	live center:	
Our representative:	■ type RN/RNC/RNA/RNW=	
	dead center:	
	• type FN/FNC/FNA/FNW	
	=	